Skip to main content
logo
اللغة
  • عربي
  • English
Login الرؤية الليلية
  • Top Management
    • Rector Office
    • The Emergence Of The University
    • Vision, Mission and Objectives
    • The Administrative Structure
  • Vice Rectories
    • Vice-Rectorate
    • Vice Rectorate of Academic and Educational Affairs
    • Vice-Rectorate for Development and Quality
    • Vice-Rectorate of Graduate Studies and Scientific Research
    • Vice-Rectorate of Branches
    • Vice-Rectorate of Female Students Affairs
  • Deanships
    • Deanship of Admission and Registration
    • Deanship of Preparatory Year
    • Deanship of Scientific Research
    • Deanship of Development and Quality
    • Deanship of Postgraduate Studies
    • Deanship of Human Resources
    • Deanship of IT and Distance Learning
    • Deanship of Library Affairs
    • Deanship of Community Service and Continuing Education
    • Deanship of Student Affairs
    • Institute of Research and Consulting Services
  • Media Center
    • News Center
    • Press Kit
    • Publications
    • University Newspaper
    • Photo Albums
    • Videos Album
    • Events
  • Initiatives and centers
    • Statistical Information Center
    • Business Incubator
    • Documents and Archive Center
    • University Education Development Center
    • Scientific Council
    • Marefa
  • The Library
    • University Libraries
    • Saudi Digital Library
  • Admission and Registration
اللغة
  • عربي
  • English

Social

  •  
  •  
  •  
  •  
  •  
  •  
  •  
Official government website of the Government of the Kingdom of Saudi Arabia
How to verify
Links to official Saudi websites end with edu.sa

All links to official websites of government agencies in the Kingdom of Saudi Arabia end with gov.sa.

Government websites use the HTTPS protocol for encryption and security.

Secure websites in the Kingdom of Saudi Arabia use the HTTPS protocol for encryption.

Registered with the Digital Government Authority under number :

20250731655
Home

Faculty Members

  • Main Portal
  • Faculty Members
  • E-Services
    • Students Services
    • Faculty Members Services
    • Employees Members Services
    • Visitors Services
    • E-Services Portal
  • Contacts
    • Contact Form
    • Important Numbers
    • Maps

مواقع أعضاء هيئة التدريس

كل ما تحتاجه من أستاذك… في مكان واحد

Breadcrumb

    You are here:
  1. Home
  2. /
  3. Faculty Members
  4. /

Prof.Haya Mohammad Abdulaziz Alaskar

Professor College of Computer Engineering & Sciences
  • Kharj
  • 011-588-8810
  • h.alaskar@psau.edu.sa
  • Curriculum Vitae
  • Publications

Publications

  • H Alaskar, AJ Hussain, W Khan, H Tawfik, P Trevorrow, P Liatsis, Z Sbaï (2020) data
  • science approach for reliable classification of neuro-degenerative diseases using gait ,
  • Journal of Reliable Intelligent Environments, 1-15
  • Khan, A Hussain, K Kuru, H Al-Askar, (2020)Pupil Localisation and Eye Centre
  • Estimation Using Machine Learning and Computer Vision, Sensor
  • Ahmed, Z., Hussain, A., Khan, W., Baker, T., Al-Askar, H., Lunn, J., Liatsis, P., Al-Jumeily,
  • D., Al-Shabandar, R., (2020). Lossy and Lossless Video Frame Compression: A Novel
  • Approach for the High-Temporal Video Data Analytics. Remote Sensing, ISI, Scopus.
  • M IoT-Enabled Flood Severity Prediction via Ensemble Machine Learning Models
  • Khalaf, H Alaskar, AJ Hussain, T Baker, Z Maamar, R Buyya, P Liatsis,IEEE Access 8,
  • 70375-70386
  • A Abdullahi, K Bawazeer, S Alotaibai, E Almoaither, M Al-Otaibi, H, alaskar,Pretrained
  • Convolutional Neural Networks for Cancer Genome Classification,3rd International
  • Conference on Computer Applications & Information
  • A Robust Quasi-Quantum Walks-Based Steganography Protocol for Secure Transmission
  • of Images on Cloud-Based E-healthcare Platforms
  • B Abd-El-Atty, AM Iliyasu, H Alaskar, A El-Latif, A Ahmed
  • Sensors 20 (11), 3108.
  • W Khan, A Hussain, H Alaskar, T Baker, F Ghali, D Al-Jumeily, 2020, Prediction of
  • Flood Severity Level Via Processing IoT Sensor Data Using Data Science Approach,
  • IEEE Internet of Things Magazine
  • H Alaskar, T Vaiyapuri, Z Sbai, 2019, Twitter Analytics for Discovering Socially
  • Important Locations for Business Improvement, IEEE International Symposium on Signal
  • Processing and Information …
  • Alaskar, H., (2019). High Predictive Performance of Dynamic Neural Network Models
  • for Forecasting Financial Time Series, ISI, Scopus.
  • Alaskar H., Alzhrani N., Hussain A., Almarshed F. (2019) The Implementation of
  • Pretrained AlexNet on PCG Classification. In: Huang DS., Huang ZK., Hussain A. (eds)
  • Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science,
  • vol 11645. Springer, Cham. ISI, Scopus.
  • Haya Alaskar, A. Hussain, Nourah Alaseem, Panos Liatsis, Dhiya Al-Jumeily:
  • Application of Convolutional Neural Networks for Automated Ulcer Detection in
  • Wireless Capsule Endoscopy Images. Sensors 19(6): 1265 (2019). ISI, Scopus. IF: 3.031.
  • H.Alaskar, 2018 Deep Learning-Based Model Architecture for Time-Frequency Images
  • Analysis, International Journal of Advanced Computer Science and Applications. ISI,
  • Scopus.
  • H. Alaskar, 2018, Deep Learning of EMG Time Frequency Representations for
  • Identifying Normal and Aggressive Actions, International Journal of Computer Science
  • and Network Security, Vol. 18 No. 12 pp. 16-25,
  • http://paper.ijcsns.org/07_book/201812/20181203.pdf. ISI
  • H. Alaskar, A. Hussain, 2018 ,Prediction of Parkinson Disease Using Gait Signals,
  • Eleventh International Conference on Developments in e-Systems Engineering, IEEE.ISI
  • Haya Alaskar , Convolutional Neural Network Application in Biomedical Signals, Journal
  • of Computer Science and Information Technology, American Research Institute, 2018,
  • Vol. 6, No. 2, pp. 45-59.
  • H. Tawfik, H. Alaskar, P. Liatsis, M. khalaf , 2018:A Dynamic Neural Network
  • Architecture with immunology Inspired Optimization for
  • Weather Data Forecasting , Big Data Research. ISSN 2214-5796 . ISI, Scopus.
  • IF:2.952
  • H. Alaskar, A. Hussain, Data Mining to Support the Discrimination of Amyo-trophic
  • lateral sclerosis Diseases Based on Gait Analysis In: Huang DS., Gromiha M., Han K.,
  • Hussain A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in
  • Computer Science, vol 10956. Online ISBN 978-3-319-95957-3, DOI
  • https://doi.org/10.1007/978-3-319-95957-3_80, ISI, Scopus.
  • H. Alasker , S. Alharkan, W. Alharkan ; A. Zaki ; L. Septem Riza,
  • 2017,Detection of kidney disease using various intelligent classifiers, Science in
  • Information Technology (ICSITech), 2017 3rd International Conference . IEEE
  • explore.
  • H. Alasker , A. Zaki , 2017Early Prediction of Chronic Kidney Disease Using Multiple
  • Automated Techniques, International Journal of Computing & Information Sciences
  • M. Khalaf, D. Al-Jumeily, R. Keight, R. Keenan, P. Fergus, H. Al-Askar, A. Shaw, I.
  • Idowu :Training Neural Networks as Experimental Models: Classifying Biomedical
  • Datasets for Sickle Cell, In: Huang DS., Bevilacqua V., Premaratne P. (eds) Intelligent
  • Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science,
  • vol 9771. Springer, Cham, Online ISBN 978-3-319-42291-6. DOI
  • https://doi.org/10.1007/978-3-319-42291-6_78 , ISI, Scopus. IF : 0.402
  • C. Montañez, P. Fergus, D. Al-Jumeily, B. Abdulaimma, H. Al-Askar :A Genetic
  • Analytics Approach for Risk Variant Identification to Support Intervention Strategies for
  • People Susceptible to Polygenic Obesity and Overweight. In: Huang DS., Bevilacqua V.,
  • Premaratne P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture
  • Notes in Computer Science, vol 9771. Springer, Cham, Online ISBN 978-3-319-42291-6 ,
  • DOI https://doi.org/10.1007/978-3-319-42291-6_80, ISI, Scopus.IF : 0.402
  • Al Kafri, S. Sudirman, P. Fergus, D. Al-Jumeily, M. Al-Jumaily, H. Al-Askar, A
  • Framework on a Computer Assisted and Systematic Methodology for Detection of
  • Chronic Lower Back Pain Using Artificial Intelligence and Computer Graphics
  • Technologies. . ICIC 2016. Lecture Notes in Computer Science, Springer, Cham. ISI,
  • Scopus. IF : 0.402
  • A.Hussain, D.Al-Jumeily, H. Al-Askar, N. Radi:
  • Regularized dynamic self-organized neural network inspired by the immune
  • algorithm for financial time series prediction. Neurocomputing 188: 23-30 (2016).
  • ISI, Scopus. IF: 3.317.
  • H. Alaskar, D. J. Lamb, A. Hussain, D. Al-Jumeily, M. Randles, P. Fergus:
  • Predicting financial time series data using artificial immune system-inspired neural
  • networks. IJAISC 5(1): 45-68 (2015)
  • A. Hussain, P. Fergus, H. Al-Askar, D. Al-Jumeily, F. Jager:
  • Dynamic neural network architecture inspired by the immune algorithm to predict
  • preterm deliveries in pregnant women. Neurocomputing 151: 963-974 (2015). ISI,
  • Scopus. IF: 3.317.
  • Reid D., Tawfik H., Hussain A.J., Al-Askar H. (2015) Forecasting Weather Signals Using
  • a Polychronous Spiking Neural Network. In: Huang DS., Bevilacqua V., Premaratne P.
  • (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in
  • Computer Science, vol 9225. Springer, Cham
  • A. Hussain, P. Fergus, D. Al-Jumeily, H. Alaskar, N. Radi:
  • The Utilisation of Dynamic Neural Networks for Medical Data Classifications- Survey
  • with Case Study. ICIC (3) 2015: 752-758
  • A. Hussain, D. Al-Jumeily, H. Al-Askar “The Application of Dynamic Self-organised
  • Multilayer network Inspired by the Immune Algorithm for weather signals forecast”, The
  • Third International Conference on Technological Advances in Electrical, Electronics and
  • Computer Engineering, TAEECE 2015, Beirut, Lebanon, 2015.
  • I. Idowu, Paul Fergus, A. Hussain, Chelsea Dobbins, H. Al-Askar:
  • Advance Artificial Neural Network Classification Techniques Using EHG for Detecting
  • Preterm Births. CISIS 2014, IEEE explore, 95-100
  • Hussain A.J., Al-Askar H., Al-Jumeily D. (2014) Physical Time Series Prediction Using
  • Dynamic Neural Network Inspired by the Immune Algorithm. In: Bouchachia A. (eds)
  • Adaptive and Intelligent Systems. ICAIS 2014. Lecture Notes in Computer Science, vol
  • 8779. Springer, Cham
  • Al-Askar H., Hussain A.J., Al-Jumeily D., Radi N. (2014) Regularized Dynamic Self
  • Organized Neural Network Inspired by the Immune Algorithm for Financial Time Series
  • Prediction. In: Huang DS., Han K., Gromiha M. (eds) Intelligent Computing in
  • Bioinformatics. ICIC 2014. Lecture Notes in Computer Science, vol 8590. Springer,
  • Cham
  • Alaskar H., Hussain A.J., Paul F.H., Al-Jumeily D., Tawfik H., Hamdan H. (2014)
  • Feature Analysis of Uterine Electrohystography Signal Using Dynamic Self-organised
  • Multilayer Network Inspired by the Immune Algorithm. In: Huang DS., Bevilacqua V.,
  • Premaratne P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in
  • Computer Science, vol 8588. Springer, Cha
  • Evaluation of Advanced Artificial Neural Network Classification and Feature Extraction
  • Techniques for Detecting Preterm Births Using EHG Records. In: Huang DS., Han K.,
  • Gromiha M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in
  • Computer Science, vol 8590. Springer, Cham
  • Huang R., Tawfik H., Hussain A.J., Al-Askar H. (2014) The Application of Artificial
  • Immune Systems for the Prediction of Premature Delivery. In: Huang DS., Jo KH., Wang
  • L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer
  • Science, vol 8589. Springer, Cham
  • D. Al-Jumeily ; A. Hussain ; H. Alaskar (2013) Recurrent neural networks inspired by
  • artificial Immune algorithm for time series prediction. The 2013 International Joint
  • Conference on Neural Networks (IJCNN) Dallas, TX, USA: 1-8.
  • Invited Book Chapters:
  • “Recurrent Neural Networks in Medical Data Analysis and Classifications”,
  • in: D. Al-Jumeily, A. Hussain, C. Mallucci, C. Oliver (eds), Applied Computing
  • in Medicine and Health, Elsevier, 2015.

Contact the university leaders

Our male and female students, we are pleased to communicate with you and receive your inquiries through the communication system

Contact
  • Helpful Information
    • Phone Directory
    • Academic Calendar
    • Other Universities
    • Open Data
  • Portal Map
    • Jobs
    • Sitemap
    • Related Links
    • FAQs
    • Old portal version
  • Automation and Digital Transformation
    • Portal Team Member
    • Technical Support
    • Information Technology
  • Policies and Procedures
    • Policies
    • Tenders

Administration of Public Relations and Media

  • To call from inside the university 1200
  • To call from outside the university 011-588-1200
  • E-mail pr@psau.edu.sa
  • To request a service and open a fault report ithelp.psau.edu.sa

© Prince Sattam bin Abdulaziz University 2022

  •  
  •  
  •  
  •  
  •  

Designed and Developed by the Deanship of Information Technology and Distance Learning