Phenylalanine ammonia-lyase, flavanone 3β-hydroxylase and flavonol synthase enzyme activity by a new in vitro assay method in berry fruits

Gema Flores *, Fernando De la Peña Moreno †, Gracia Patricia Blanch, Maria Luisa Ruiz del Castillo

Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain

A R T I C L E I N F O

Article history:
Received 26 August 2013
Received in revised form 28 November 2013
Accepted 7 December 2013
Available online 12 December 2013

Keywords:
Phenylalanine ammonia-lyase
Flavanone 3β-hydroxylase
Flavonol synthase
Enzyme activity
Berry

A B S T R A C T

An HPLC method for the determination of phenylalanine ammonia-lyase, flavanone 3β-hydroxylase and flavonol synthase enzyme activity is proposed. This method is based on the determination of the compounds produced and consumed on the enzymatic reaction in just one chromatographic analysis. Optimisation of the method considered kinetic studies to establish the incubation time to perform the assay. The method here described proved to be an interesting approach to measure the activities of the three enzymes simultaneously increasing the rapidity, selectivity and sensitivity over other existing methods. The enzyme activity method developed was applied to strawberry, raspberry, blackberry, redcurrant and blackcurrant fruits.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Flavonols are widely occurring phenolic compounds which exhibit multiple biological functions as a consequence of their powerful antioxidant properties (Vinson, Hao, Xuehui, & Zubik, 1998). Epidemiological and experimental studies indicate that flavonols can act as important proteasome inhibitors and apoptosis inducers (Chen et al., 2005). For this reason, long-term high consumption of flavonol-rich foods is associated with a lower risk of developing some diseases such as heart disease (Hertog, Feskens, & Kromhout, 1997), stroke (Keli, Hertog, Feskens, & Kromhout, 1996) and stomach cancer (Knekt et al., 1997). Although high contents of flavonols have been described in a number of vegetables (Sultana & Anwar, 2008), they are particularly abundant in edible berries (Häkkinen, Kärenlampi, Heinonen, Mykkänen, & Törnönen, 1999).

Flavonols are produced in berries through the flavonoid biosynthetic pathway. Phenylalanine ammonia-lyase (PAL) enzyme catalyses the nonoxidative deamination of l-phenylalanine to yield cinnamic acid, a reaction that is generally considered to represent a key point at which carbon flux into this pathway is controlled. Cinnamic acid is subsequently converted to naringenin by the action of other enzymes. Later in the pathway three branch-point enzymes convert naringenin to flavones, dihydroflavonols and anthocyanidins, respectively. Specifically, the formation of dihydrokaempferol from naringenin is catalysed by flavanone 3β-hydroxylase (FHT) (Lukacin, Gröning, Schiltz, Britsch, & Matern, 2000). Dihydrokaempferol, similarly to the other dihydroflavonols, can be further oxidised to kaempferol by the action of flavonol synthase (FLS). PAL activity is associated with the accumulation of anthocyanins and other phenolic compounds in fruit tissues of several species, which is active during the development and ripening of fruits (Given, Venis, & Grierson, 1988). FHT and FLS are non-heme iron enzymes, dependent on Fe2+, molecular oxygen, 2-oxoglutarate and ascorbate, the typical cofactors of the class of 2-oxoglutarate-dependent dioxygenases (Britsch, Heller, & Grisebach, 1981).

Enzyme activities have been extensively studied in plants using TLC and spectrophotometers to determine the reaction products (Keli et al., 1996; Knekt et al., 1997; Sultana & Anwar, 2008). Kováčik and Klejdus (2012) reported the use of HPLC to determine PAL enzyme activity in two species, Matricaria chamomilla and Arabidopsis thaliana, and compared the results with a spectrophotometry assay. They stated that HPLC is a more accuracy method since it avoids interferences with cinnamic acid detection caused by other UV-absorbing compounds.

PAL activity has been assayed in grapes (Hrazdina, Parsons, & Mattick, 1984), apple (Faragher & Brohier, 1984), melon (Diallinas & Kanellis, 1994), sweet cherry (Wiersman & Wu, 1998) and strawberry (Cheng & Breen, 1991). FLS has been extracted from Matthiola incana (Spribille & Forkmann, 1984), Petunia hybrida (Forkmann, de Vlaming, Spribille, Wiering, & Schramm, 1986), Dianthus caryophyllus...
or blackcurrant can be found in the literature. Bilberry (Jaakola et al., 2002). However, to our knowledge, no information on PAL, FHT or FLS from raspberry, blackberry, red currant or black currant can be found in the literature.

The goal of this investigation was to develop a HPLC method for the determination of the PAL, FHT and FLS enzyme activities asayed in vitro in one chromatographic analysis. The developed method was then applied to study the activity of PAL, FHT and FLS enzymes in strawberry, raspberry, blackberry, red currant and black currant fruits.

2. Materials and methods

2.1. Chemicals and samples

HPLC grade methanol (MeOH) and acetonitrile (ACN) were supplied by Labscan Ltd. (Dublin, Ireland). Trifluoroacetic acid (TFA), polyclara AT, Tris/HCl, FeSO4, Na-ascorbate, 2-oxoglutarate and ethylendiaminetetraacetic acid (EDTA), cinnamic acid, phenylalanine, naringenin, kaempferol and morin were purchased from Sigma (Steinheim, Germany). Ethyl acetate was provided by Scharlau. Milli-Q water was collected from a purification system (Millipore, Milford, MA, USA). Full-ripe strawberry (Fragaria × ananassa), raspberry (Rubus idaeus L.), blackberry (Rubus fruticosus L.) and red currant (Ribes rubrum) fruits were acquired from the local supermarket whereas black currant (Ribes nigrum) was grown under controlled conditions. The used varieties of the berries were Splendor (Egypt), Brilliance (Spain), Tupi (Spain), Rovada (Holland) and Hope (Scotland) for strawberry, raspberry, blackberry, red currant and black currant, respectively. All the berries were picked up with uniform size, colour, ripeness and free from damage were utilised, as explained below.

2.2. Enzyme preparation

The enzyme preparation was basically the same for all fruits studied. The berries were first frozen at −80 °C and lyophilized. Subsequently, the crude enzymes were extracted as follows: the fruits were ground in a mill up to a fine powder. A total of 1.5 g of the powder obtained, 0.25 g of quartz sand, 0.25 g of Polyclar AT and 4 mL of 0.1 M Tris/HCl (containing 0.4% Na-ascorbate, pH 7.25) were properly homogenised (Halbwirth et al., 2009). The resulting homogenate was then centrifuged at 4 °C and 5000 for 10 min. Finally the supernatant was taken to accomplish PAL, FHT and FLS assays, as detailed below. This preparation was performed in triplicate for statistical studies.

2.3. Enzyme assays

Once obtained enzyme extract, the PAL, FHT and FLS activities were simultaneously measured as previously described by Halbwirth et al. (2009) with slightly modifications: 1.104 mmols of kaempferol, cinnamic acid and phenylalanine, 2.208 mmols of naringenin, 50 μL of the enzyme preparation obtained above, 5 μL of 3.48 mM 2-oxoglutarate, 5 μL of 2.01 mM FeSO4, 7H2O, and 60 μL of a buffer made up of 0.1 M Tris/HCl + 0.4% Na-ascorbate (pH 7.25) were mixed. For both studies, the enzyme assay was then incubated for 45 min at 30 °C. After that, the assay was terminated by addition of 140 μL of ethyl acetate, 10 μL of acetic acid and 10 μL of 0.1 mM EDTA. The organic phase was finally taken to carry out the HPLC analysis as detailed below. In addition, the reaction in absence of enzyme preparation (so-called blank) was also performed for comparison.

2.4. HPLC analysis

Chromatographic analyses of the ethyl acetate phase were performed employing a Konik-Tech model 560 (Barcelona, Spain). Morin was used as internal standard. Liquid chromatograph fitted with a manual injection valve (model 7725i, Konik-Tech, Barcelona, Spain) having a 20-μL sample loop and an ultraviolet (UV) detector operated at 360 nm for morin and kaempferol, 280 nm for cinnamic acid and 290 nm for naringenin. The separation was accomplished on a ODS reverse phase (C18) column (250 × 4.6 mm i.d., 5-μm particle size, ACE, Madrid, Spain). The elution was performed by using solvent A (H2O containing 0.1% TFA) and B (ACN) at a constant flow rate of 1.0 mL/min. A linear gradient was applied from the initial eluent composition (A:B, 75:25, v/v) up to A:B, 70:30 (v/v) for the first 15 min and then up to final composition (A:B, 65:35, v/v) within 25 min. Data acquisition was carried out by using Konikrom Plus (KNK-725-240). Identification of morin, cinnamic acid, naringenin and kaempferol was based on the comparison of the retention times obtained from the standards and from the chromatographic signals in the samples run under the same experimental conditions. Each sample was injected twice. For comparison, blanks were accomplished by measuring the content of cinnamic acid, naringenin and kaempferol in absence of enzyme extract. The LC equipment was carefully washed by passing methanol through the whole system for 15 min after every single run.

2.5. Calibration curves

Known volumes (1.5–32.5 μL) of a standard solution of 90 mg L−1 of cinnamic acid, naringenin and kaempferol were diluted up to 100 μL to make the calibration curves. The standard solution was prepared in 5 μL of 3.48 mM 2-oxoglutarate, 5 μL of 2.01 mM FeSO4 · 7H2O, 60 μL of a buffer made up of 0.1 M Tris/HCl + 0.4% Na-ascorbate (pH 7.25), 140 μL of ethyl acetate, 10 μL of acetic acid and 10 μL of 0.1 mM EDTA to simulate the enzyme assay. A 12.5 μL-volume of a solution of 90 mg/L of morin (equivalent to 160 ng) were used as the internal standard. Duplicate injections of 20 μL of the ethyl acetate phase containing the target compounds were sampled into HPLC. Calibration curves were obtained for cinnamic acid, naringenin and kaempferol by representing the injected amount (ng) of each compound versus the relative peak area obtained (absolute area of the analyte/area of morin).

2.6. Statistical analyses

Data are expressed as mean values ± 95% confidence interval. Analysis of variance (ANOVA) was performed by one way analysis of variance with significant differences between means determined by the Students t-test. The values used were always the mean of three replicates performed. JMP Statistics software package version 8 was used for statistical analyses (SAS Institute Inc., NC).

3. Results and discussion

A new method for the determination of the PAL, FHT and FLS enzyme activities by HPLC is proposed. It is based on the separation and quantification of the compounds produced and consumed from the enzymatic assays. The method developed was applied to strawberry, raspberry, blackberry, red currant and black currant fruits.

First, the chromatographic conditions were optimised. As an example, Fig. 1 represents the chromatogram obtained from the HPLC analysis of a standard solution (50 μg mL−1) of morin,
Kinetic studies were performed to select the best incubation time to assay PAL, FHT and FLS activities. Fig. 2 illustrates the correlation of the amounts (ng) of naringenin consumed and cinnamic acid and kaempferol produced (ng) with the reaction time. Data are expressed as means ± 95% confidence intervals of three independent experiments.

At 30 min it is detected a peak at the beginning of the chromatogram that is not at 15 min and that is very small at 45 min. This peak may correspond to dihydrokaempferol. It indicates that FHT exerted its activity at 15 min. When the activity of FLS is considered based on the production of kaempferol it reached the highest amount at 45 min, suggesting an activity maximum at this reaction time.

From these results, the reaction time selected to carry out the measurements of the activities of PAL, FHT and FLS under the tested experimental conditions was 45 min.

Once developed the HPLC method, the activity of PAL enzyme was quantitatively determined on the basis of the amount of cinnamic acid produced during the assay at the optimised reaction time. Similarly the activity of FHT and FLS was measured through the amount of naringenin consumed and kaempferol produced as above described. The correlation between the relative peak areas measured and amounts (ng) were established by applying calibration curves. Enzyme activity was expressed as pkat. One katal is defined as the enzyme activity transforming 1 mol of compound per second.

Fig. 3 illustrates the pkat activities of PAL, FHT and FLS enzymes estimated in strawberry, raspberry, blackberry, red currant and blackcurrant fruits. The results obtained from the blank are also shown.

From Fig. 3 PAL showed a significant (p < 0.05) higher activity in blackcurrant, blackberry and red currant with respect to blank. This did not happen in raspberry and strawberry in which the PAL activity was the same as that in the blank.

On the other hand, FHT activity was higher in all the berries compared to the blank except in blackberry. This result corresponds with lack of FLS activity in blackberry. In raspberry and redcurrant the FHT activity can be associated with a decrease in naringenin amount and production of kaempferol via dihydrokaempferol by FLS enzyme. However, in strawberry and blackcurrant FHT activity did not correspond to a FLS activity. It indicates that FHT allows the transformation of naringenin into dihydrokaempferol but the activity of FLS is not high enough to produce kaempferol in these berries.

The variations in PAL activities here found depending on the berry fruit studied are in accordance with other variations in PAL activity described in the literature. In this respect, different PAL
enzyme activities have been reported in citrus (Dubery & Schabort, 1986) and grape berries (Roubelakis-Angelakis & Kliever, 1985). Similarly, changes in PAL activity has also been reported during ripening in grapes (Hrazdina et al., 1984), apple (Faragher & Brohier, 1984), melon (Dialinas & Kanelis, 1994) and sweet cherry (Wiersman & Wu, 1998). Since, to our knowledge, no information on PAL, FHT and FLS activity in the berries here studied is available no bibliographical comparison could be established. Only it can be found in the literature PAL activity in strawberries, its characterisation has proved two peaks, one in green fruits and a second in nearly ripe fruits. However, whether this represents different PAL gene products is still unknown (Cheng & Breen, 1991).

As a conclusion, the main advantage of the present method with respect to that of the literature is that HPLC enables the quantitative determination of produced and consumed compounds in the enzymatic reaction by means of the use of an internal standard. In addition this method increases selectivity and sensitivity comparing to TLC analysis and rapidity by the simultaneously measurement of PAL, FHT and FLS enzyme activities. The optimised method was satisfactorily applied to strawberry, raspberry, blackberry, red currant and blackcurrant. As a part of our ongoing study of the influence of elicitors on polyphenols pathway we plan to use the method here proposed to study their effects on enzyme activity.

Acknowledgements

This work was financially supported by the Ministerio de Cien-
cia e Innovación (Project AGL2007-65772 y AGL2010-20585), Fer-
nando de la Peña and Gema Flores thank CSIC for their respective Jae contracts.

References

